Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy.
نویسندگان
چکیده
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites.
منابع مشابه
Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملIn vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay
Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملDeconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes.
Colocalization of dihydropyridine (DHPR) and ryanodine (RyR) receptors, a key determinant of Ca(2+)-induced Ca2+ release, was previously estimated in 3-, 6-, 10-, and 20-day-old rabbit ventricular myocytes by immunocytochemistry and confocal microscopy. We now report on the effects of deconvolution (using a maximum-likelihood estimation algorithm) on the calculation of colocalization indexes. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biophotonics
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2017